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Based on a solution, by the finite-volume method, of the complete Navier-Stokes and Reynolds equations, 

with the latter closed by differential equations of a two-parameter dissipative model of turbulence , an 

analysis is made of the generation of three-dimensional eddy structures in a flow past a surface with a cavity. 

The  effect of eddy  enhancement  of heat and mass t ransfer  processes in a flow past surfaces with cavities 

has become widely known owing to a ten-year  series of experimental  studies [1-6 ] conducted by scientific schools 

in various regions of the former USSR. The generation of waterspout-like eddy structures near  surfaces with 

spherical cavities or a hemispherical cavity on a channel  wall, which has been detected in [1, 2 ], is subjected to a 

systematic analysis in [4, 51 based on detailed consideration of the unsteady-s ta te  mechanism of vortex formation 

in an isolated cavity under  conditions of developed turbulent flow. In 13, 6 ] it is asserted that formation of large- 

scale eddy  structures in the wall region of a turbulent flow near  a surface with spherical cavities permits not only 

enhancement  of heat and mass t ransfer  processes but also a decrease in the hydrodynamic  losses associated with 

liquid flow, in particular, due to a decrease in the friction resistance. However, in [7 ] the latter s ta tement  is called 

into question because of insufficient experimental  justification of it. Moreover, in the same work the method of eddy  

enhancement  of heat and mass t ransfer  processes is related to artificial turbulization of the wall flow. An analysis  

of the origin of this problem as a whole reveals the need for a more detai led investigation of the governing 

mechanism of generation of vortices induced owing to concavity reliefs. Therefore ,  use of methods of numerical  

simulation seems to be rather  expedient  owing to the possibility of a detailed diagnosis of the flow field with 

emphasis of its most important features. 

In the past three years numerical simulation of large-scale eddy  structures formed in the wall region of 

laminar and turbulent  incompressible-fluid flows in the vicinity of a spherical cavity on a surface has been 

successively developed [8-12 ]. The  investigations [8, 9 ] have been carried out in a simplified a formulation under  

the assumption of symmetry  of the unseparated flow relative to the geometric symmet ry  plane passing through the 

center of a shallow cavity. In [10] a similar approach is adopted to analyze the vortex s tructure of the detached 

flow in a deep cavity, and  in [11, 12 ] results of computer-aided visualization of the vortex flow near  a cavity are  

systematized,  including the cases of unsteady development of the process and flow blocking in a thin wall layer.  

In our  numerical study, considerable at tention is paid to a detailed analysis of the governing mechanism 

of vortex generation in the wall flow of an incompressible viscous fluid near a single spherical cavity on a smooth 

wall and to an investigation of the influence of the geometric parameters  and the operating conditions, including 

the relative cavity depth and the Reynolds number, on the formation of vortex structures and thedistr ibut ion of 

the flow characteristics. 

In our work, use is made of original codes based on a solution of the parabolic Nav ie r -S tokes  or Reynolds  

equations written for Cartesian velocity components and closed in the eddy case with the aid of a two-parameter  

dissipative model of turbulence. The  initial unsteady-state  equations in dimensionless form for the general ized 

variable • = (u, v, w, k, e) in the curvilinear nonorthorgonal coordinates ~, r/, ~ are represented as 
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1 + (¢l~J)t + (UdiJ)~ + (VdP)~ + (WdP)~ = JS~, + (DIIDII + DI2DI2 + DI3Dt3 ) tl)~ 

+ 

where the subscripts ~, r/, ~ denote partial derivatives along the coordinate directions. In addition to the source 

terms proper, S¢, includes the diffusion terms resulting from the choice of the nonorthogonal coordinate system. 

The contravariant variables U, V, W responsible for convective transfer through cell faces are calculated as 

U =  DllU + Dl2v + Dt3w , V = D2tu + D22v + D23w , W =  D31u + D32v + D33w. 

Here, the matrix of the coefficients Dij and the Jacobian J are functions of the Cartesian coordinates. 

In calculations of turbulent flows a high-Reynolds-number version of the two-parameter dissipative model 

of turbulence in combination with the well-known method of near-wall functions is adopted. This an approach can 

be used for representation of fully developed turbulent flows [I3 1. 

As in [8-121, the problem is solved in a finite calculation region bounded by penetrable reference planes 

that are perpendicular to the geometric symmetry plane and the solid wall and are sufficiently removed from the 

cavity. On them and on the upper reference plane, parallel to the wall in a flow, soft boundary conditions (conditions 

of continuation of the solution [13 ]) are specified. 

Discretization of the initial differential equations is accomplished within the framework of the concept of 

splitting with respect to physical processes in combination with the finite-volume method applied to the equations, 

written in the delta form in the so-called E-factor formulation, for increments of dependent variables. Unlike the 

well-known methods of specifying the calculation pattern for the main variables, related to determination of the 

Cartesian velocity components at spaced nodes (at the centers of sides of a calculation cell) or at joint nodes (at 

the centers of cells), use is made of a nontraditional approach based on disposition of the indicated variables at 

the corners of the cells (the nodes of the calculation grid). In this case, the conditions of adhesion on solid surfaces 

are rigorously satisfied. The use of superimposed grids automatically leads to the problem of consistency of the 

velocity and pressure fields. Unlike the well-known Rhee -Chou  approach associated with introducing a smoothing 

unit into the pressure correction block, the procedure proposed by Chen [13 ] is employed. According to this method, 

when the mass source is determined in the pressure correction procedure, local mass unbalances are averaged over 

reference volumes located between nodes of the calculation grid. 

Much attention is given to constructing an algorithm for calculation of three-dimensional unsteady-state 

flows. The procedure of [ 13 ] with global iterations used for solving unsteady-state equations has been modified to 

extend to the solution of steady-state equations of fluid dynamics. In so doing, at each time step iterations are 

continued to convergence of the momentum equations in the solution blocks together with local iterations in the 

pressure correction block, constructed using the SIMPLEC procedure. 

To ensure high accuracy of calculations in the case of sharp gradients of the governing parameters in 

approximation of convective terms of the explicit part of the equations, use is made of the quadratic Leonard 

counterflow scheme, characterized by low scheme diffusion. At the same time, in order to smooth discrepancies, 

increase the stability of the calculation procedure, and damp possible nonphysical oscillations in the implicit part 

of the equations, the first-order counterflow approximation is adopted in combination with introduced additional 

diffusion. The stability of counting is also improved by introducing a pseudotime term in the implicit part of the 

equation for the increment of the generalized dependent variable. The high computational efficiency of the algorithm 

is attributable to use of the method of incomplete matrix factorization in the Stone version (SIP) to solve the systems 

of algebraic equations. 

Calculations of three-dimensional eddy flows near a cavity in a plane are made on an AT 486 DX4/100 

personal computer. A program developed for graphical visualization of eddy flows with the aid of liquid-particle 

tracks is used for analysis of large-scale eddy structures. The Reynolds number is varied from 700 to 25,250; its 

upper bound corresponds to the experimentally specified characlerislics, namely, an undisturbed-flow velocity U 

482 



Q 

--- 

Fig. 1. Fragment of a calculation grid in the vicinity of a cavity with a depth 

of 0.22 (a); picture of a viscous fluid spreading over a surface with a cavity 

(b) with the boundary of the detached zone (u = 0); s tructure of an eddy 

turbulent flow near  a cavity at Re = 104 (c). 

= 10 m/see  and a cavity diameter  D = 0.0375 m. These quantities are used as parameters  for nondimensional i ty  

in solving the present problem. The depth of the cavity is specified equal to 0.06 and 0.22. 

The choice of topology for the three-dimensional  calculation grids used to solve the formulated problem is 

based on specifying a family of grid lines orthogonal to the upper reference boundary  (a penetrable plane).  In this 

case, an algebraic oblique grid with a simplified composition and compression of its lines toward the solid wall in 

the flow and in the region of shear-flow development is generated.  Grid nodes are  also concentrated in the vicinity 

of the cavity in order  to provide appropriate resolution of the realized eddy structure of the flow. Figure la presents 

a fragment of a calculation grid containing 35 x 18 x 33 nodes. This grid was used to model s teady-s ta te  de tached 

flows past a deep cavity in laminar and turbulent  modes. Calculations of uns teady-s ta te  flows were made on 49 

x 30 x 47 grids. Grids with a larger number  of nodes (61 x 31 x 61) were used for a detailed analysis  of the 

eddy structure of a laminar flow past deep and shallow cavities. 

Figure lb  and c presents some results of an investigation of generat ion of large-seale vortices in a deep 

cavity for a turbulent  flow pattern at Re -- 104. The  pictures of the velocity vectors in the wall layer  with indication 

of the return-flow region (Fig. lb) ,  determined by the line of the longitudinal velocity equal to zero (u = 0), 

demonstrate  the initiation of liquid circulation in a horizontal plane. Similarly to the experimental ly observed [2 ] 

s teady-state  flow, the cavity liquid overflows toward the incoming external  flow and forms concentric s treams that 

indicate that the liquid returns to the peripheral region of the cavity and then is drawn back into the latter.  The  

trajectories of liquid particles shown in Fig. lc illustrate ejection of wall layers of the liquid from the peripheral  

part of the cavity and swirling of particles in a large-scale vortex. Here,  pronounced mass t ransfer  of the liquid 

entering the cavity to the region adjoining the symmetry  plane is observed. In essence, the cavity in the plane acts 

as a "vacuum cleaner" that draws the wall liquid layers into the cavity and forms a jet flow in the symmet ry -p lane  

zone. In [11 ], attempts are under taken to control eddy structures in a cavity by installing a low parti t ion parallel 

to the incoming flow in order  to cut off the liquid flowing in from peripheral layers of the cavity. Th e  researchers  

succeeded in weakening the vortex in one of the cavity halves; however in solving the s teady-s ta te  problem it turns 

out to be ra ther  stable and almost does not experience deformation. 

Figure 2 demonstra tes  numerical modeling of a laminar  eddy  flow developing in a deep cavity for a 

Reynolds number  ranging from 700 to 2500. It should be noted that calculation of laminar flows near  a cavity on 

a plane is done provided that a Pohlhausen profile with a chosen thickness of the boundary layer  is specified for 

the incoming flow. As a rule, the thickness of the boundary layer near the cavity is of the same order  of magni tude  

as the depth of the latter. 
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Fig. 2. Evolution of an eddy flow in 

cavity at a Reynolds number  ranging 
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the longitudinal symmetry  plane of a 

from 700 to 2500: pictures of velocity 

vectors and isobars drawn with a step of 0.01. The  line bounding the shaded 

zone is the isochor corresponding to u = 0. Maximum and minimum values of 

excess pressure referred to the doubled velocity head: a) t = 0.25; Pmax = O. l 1 ; 

Pmin-- -0 .06 ;  b) 1, 0.11, -0 .06 ;  c) 2, 0.1, - 0 .06 ;  d) 3, 0.1, - 0 . 06 ;  e) 4, 

0.09, -0 .05 ;  f) 5, 0.08, -0 .05 ;  g) 6, 0.08, -0 .04 ;  h) 7, 0.06, -0 .03 ;  i) 8, 

0.05, -0 .02 ;  j) 9, 0.04, -0 .02 .  In the figure, dimensionless times de termined 

by the flow velocity and the cavity diameter  are given. 

The evolution of the pressure fields near  lhe cavity and the deformation of the contours of the detached 

zone point  to a complicated process of flow t ransformat ion  re la ted to load red i s t r ibu t ion  and  its ultimate 

equalization. The  detached zone tends to occupy the whole cavity, and the intensity of the re turn  flow increases 

more than twofold (the maximum velocity reaches a value of the order  of 0.2). It is pert inent  to note that a low 

(negative) pressure develops at the center  of the core vortex. And finally, the drop in the ex t reme pressures with 

increasing Reynolds number  corresponds to the natural tendency of a decrease in the hydrodynamic  resistance of 

the cavity. Unfortunately,  the concept of the occurrence of periodic vortex generation proposed in a number  of 

experimental  studies [ 1, 2, 4, 5 ] has not yet  been confirmed. The  large-scale vortex s t ructure  in the cavity remains 

topologically unchanged with the exception of changes in dimensions. This behavior of the eddy  flow can be 

explained by the absence of the considerable disturbances typical for a physical experiment ,  i.e., the condit ions of 

carrying out a computational experiment turn out to be overly idealized. On the other  hand,  the instability realized 

with increase in the Reynolds number, which is capable of triggering destabilization of large-scale eddy flow in the 

cavity, can exert  a considerable influence on the behavior of the flow beyond the Re range considered.  In any case, 

further  investigations of the role of an unsteady mechanism in vortex generation are needed,  including considerat ion 

of a broadened spectrum of geometric factors and conditions affecting the flow structure and turbulenl  flows. 

To analyze s teady-state  vortex structures generated in cavities in more detail, in Figs. 3, 4 a comparison 

is made of flows past deep and shallow cavities in a plane for the same thickness of the boundary  layer  at Re = 

103 . The  thickness of the boundary layer near the cavities was chosen equal to approximately 0.2. It should be 

noted that unlike the well-known two-dimensional ,  in particular,  toroidal, vortices, th ree -d imens iona l  eddy  

structures require complicated identification. The  most suitable holographic methods of flow visualization for the 

flows considered cases have as yet no computational analogs. Therefore  as tools of computer-a ided analysis of flows 

with a complicated spatial structure, to which the flows under  consideration pertain, use is made of generators  of 
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Fig. 3. Compar ison of pictures of a viscous fluid spreading  over a surface near  

cavities (a, b), profiles of the t ransverse velocity (c, d) ,  and  isobar  pictures 

(e, f) for cavities with a depth of 0.06 and  0.22 at  Re -- 103: a) isotachs from 

0.03 to 0.09 with a step of 0.03; b, d, f) contours  of the de tached zone (u -- 

0); c) isolines w -~ const corresponding to the values - 0 . 0 2 ,  O, 0.02; e, f) 

isobars from - 0 . 0 3  to 0.05 and from - 0 . 0 4  to 0.1, respectively, with a step 

of 0.02. 

pictures of liquid-particle trajectories observed at different viewing angles,  slides of pictures of velocity vectors,  

isolines of scalar  parameters  represent ing distinctive plane sections of flow fields in character is t ic  cross sections of 

the calculation region, and  pictures of liquid spreading over solid surfaces in a flow. In the present  work a t ten t ion  

focusses on flow pictures and pressure fields on the surface in a flow (Fig. 3) and  in a flow cross section running 

through the cavity center  (Fig. 4). In the latter case, pictures of velocity vectors of the so-called secondary  flow are  

constructed using two velocity components ,  namely,  t ransverse w and vertical v. 

As is seen in Fig. 3, a cavity of ei ther depth exerts  a re tard ing  action on the wall layers  of the liquid; 

moreover an extensive bulb-l ike detached zone is formed in the deep cavity. Just  as in the flow picture cons idered  

in Fig. lb,  the deep cavity exhibits  liquid circulation that is drawn from peripheral  wall layers  and then is displaced 

toward the incoming flow outside the cavity. It should be noted that  the flow coming into the cavity is l aminar  

independent ly  of its depth. At the cavity outlet the wall flow is the same as the flow in a nozzle with an  angu la r  

semiaper ture  of up to 45 °, i.e., a cavity in a plane abrupt ly changes the flow direction in the wall layers  (Fig. 3a 

and b). 

It is pert inent  to note that the profiles of the t ransverse velocity w are  different for shallow and deep  cavities 

due  to supe rpos i t ion  of eddy  s t ruc tu r e s  of d i f fe ren t  o r i en ta t ion  (Fig. 3c and  d) .  T h e y  a re  d e t e c t e d  f rom 

consideration of the velocity vectors in Fig. 4a and b. It is of interest  that  the charac te r  of the secondary  flow in 

the median plane is completely different for cavities of different depth. Thus,  in Fig. 4a a pair of helical vortices 

is seen to form due to intense mass t ransfer  from the upper liquid layers to the space surrounding the cavity,  while 

in the case of a deep cavity transverse wall s t reams are formed in the secondary  flow that interact in the longitudinal  

symmet ry  plane. In the latter case, liquid layers in the cavity and outside it are involved in vortex motion.  
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Fig, 4. Pictures of a secondary eddy flow (a, b) and isobars (c, d) in the 

median cross section of a cavity for two depths of it 0.06 and 0.22 at Re = 

103: a) isotachs corresponding to 0.01 and 0.02; c, d) isobars from 0.005 to 

0.04 with a step of 0.005 and from 0.0025 to 0.0085 with a step of 0.001, 

respectively. 

As is noted in [8, 9 ], the pressure distribution in a shallow cavity has a canonical dome-l ike form. This is 

confirmed by the isobar pictures in Figs. 3e and 4c. For the deep cavity, the pressure distr ibution exhibits  a more 

complicated and nonuniform character.  On the surface in the central part of the cavity the pressure distribution 

becomes equalized. The  elevated-pressure zone deforms and adjoins the site of a t tachment  of the flow, and here  

two pressure maxima are realized. In the central part of the cavity, an extended region of decreased pressure 

develops in the shear- layer  zone, which is related to the high intensity of the return flow. 

To sum up, the conducted numerical s tudy of large-scale vortex structures genera ted  in a cavity in a surface 

makes it possible to obtain fur ther  insight into the mechanism of eddy  enhancement  of heat and mass t ransfer  

processes and to be able to control it. 

The  work was carried out under  financial support of the Russian Fund for Fundamenta l  Research (project 

No. 96-02-16356). The  authors thank Prof. G. A. Dreitser and Prof. A. P. Kozlov for fruitful discussion of the 

problem. 

N O T A T I O N  

u, v, w, Cartesian components of the velocity; k, e, energy of turbulent  pulsations and rate of its dissipation; 

F~,, t ransfer  coefficient; U, V, W, contravariant components of the velocity; p, relative excess pressure; Re, Reynolds  

number. Subscripts: max, rain, maximum and minimum values. 
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